变频调速的原理及电机系统节能改造-大比特电机网-中国微电机行业门户网站 - 澳门永利网上娱乐
大比特商务网 |资讯中心 |技术论坛 |解决方案 登录 注册 |电子刊 |招聘/求职
您的位置:微电机世界网 >>行业新闻 >>新闻

变频调速的原理及电机系统节能改造

2016-06-02 14:31:39     来源:杜氏动力        

【大比特导读】随着科学技术的飞速发展,特别是电力电子技术、微电子技术、自动控制技术的高度发展和澳门永利网上娱乐使变频器的节能效果更为显著。

电机是一种澳门永利网上娱乐量大、使用范围广的高耗能动力设备。据,我国的总装机容量约为4亿千瓦,年耗电量约为6000亿kwh,约占工业用电的70—80%。我国以中小型电机为主,约占80%,而中小型电机耗损的电量却占总损耗量的90%。电机在我国的实际澳门永利网上娱乐中,同国外相比差距很大,机组效率为75%,比国外低10%;系统运行效率为30—40%,比国际先进水平低20—30%。因此在我国中小型电机具有极大的节能潜力,推行电机节能势在必行。

由于异步电机结构简单、制造方便、价格低廉、坚固耐用、运行可靠,可用于恶劣的环境等优点,在工农业生产中得到了广泛的澳门永利网上娱乐。特别是对各行各业的泵类和风机的拖动上非彼莫属,因此,拖动泵类和风机的电机节能工作倍受重视。

随着科学技术的飞速发展,特别是电力电子技术、微电子技术、自动控制技术的高度发展和澳门永利网上娱乐使变频器的节能效果更为显著。它不但能实现无级调速,而且在负载不同时,始终高效运行,有良好的动态特性,能实现高性能、高可靠性、高精度的自动控制。相对于其它调速方式(如:降压调速、变极调速、滑差调速、交流串级调速等),变频调速性能稳定、调速范围广、效率高,随着现代控制理论和电力电子技术的发展,交流变频调速技术日臻完善,它已成为交流电机调速的最新潮流。变频调速装置(变频器)已在工业领域得到广泛澳门永利网上娱乐。

使用变频器调速信号传递快、控制系统时滞小、反应灵敏、调节系统控制精度高、使用方便、有利于提高产量、保证质量、降低生产成本,因而使用变频器是厂、矿企业节能降耗的首选产品。

变频电机节电器是一种革命性的新一代电机专用控制产品,基于微处理器数字控制技术,通过其内置的专用节电优化控制软件,动态调整电机运行工程中的电压和电流,在不改变电机转速的条件下,保证电机的输出转矩与负荷需求精确匹配,从而有效避免电机因出力过度造成的电能浪费。

交流电动机是当前澳门永利网上娱乐最广泛的电机,约占各类电动机总数的85%,它具有结构简单、价廉、不需维护等优点,但它的弱点是调速困难,因而在许多澳门永利网上娱乐场合受到限制或借助机械方式来实现调速。

变频器就负载类型而言主要有两方面的典型澳门永利网上娱乐:1、恒转矩澳门永利网上娱乐;2、变转矩澳门永利网上娱乐。就澳门永利网上娱乐的目的而言主要有:1、以改进工艺为主要目的,确保工艺过程中的最佳转速、不同负载下的最佳转速以及准确定位等。以其优良的调速性能,提高生产率、提高产品质量、提高舒适性,使设备合理化,适应或改善环境等。2、以节能为主要目的——以流量或压力需要调节的风机、泵类机械的转速控制来实现节能改造效果非常显著。

二、变频调速的原理

在企业所使用的耗电设备中风机、水泵、空压机、液压油泵、循环泵等电机类负载占绝大多数。由受到技术条件限制,这类负载的流量、压力或风量控制系统几乎全部是阀控系统,即电机由额定转速驱动运转,系统提供的流量、压力或风量恒定,当设备工作需求发生变化时,由设在出口端的溢流、溢压阀或比例调节来调节负载流量、压力或风量、从而满足设备工况变化的需要。而经溢流溢压阀或比例调节阀溢流溢压后,会释放大量的能量,这部分耗散的能量实际上是电机从电网吸收能量中的一部分,造成了电能极大的浪费。从这类负载的工作特性可知,其电机功率与转速立方成正比,而转速又与频率成正比。如果我们改变电机的工作方式,让它不总是在额定工作频率下运转,而是改由变频调整控制系统进行启停控制和调整运行,则其转速就可以在0~2900r/min的范围内连续可调,即输出的流量、压力或风量也随之可在0~100%范围内连续可调,使之与负载的工作需要求精确匹配,从而达到节能降耗的目的。

交流电机转速如下:n=60f(1-s)/p

式中:n=电机转速

f=电源频率

p=电机的极对数

s=转差率

由式可见,交流电动机的同步转速n与电源频率f成正比,所以改变电源频率就能改变电机转速,从而实现调速的目的。

三、变频调速节电原理

变频调速节电,顾名思义,变频调速才能节电。下面主要对两类典型负载澳门永利网上娱乐的节电原理作一下分析。

(1)、恒转矩负载类澳门永利网上娱乐

恒转矩负载即不管转速如何变化,负载转矩是恒定的。

如下公式:P=K*T*N

K=系数

P=轴功率

T=负载转矩

N=转速

从上述公式可以看到,轴功率与电机的转速成正比,当由于工艺的需要而调整电机速度时,自然可以达到相应比例节电的目的。

(2)、变转矩负载类澳门永利网上娱乐

离心风机、泵类是属于典型的变转矩负载,其工作特点是:大多数是长期连续运行,由于负载转矩与转速的平方成正比,所以一旦转速超过额定转速,就会造成电机的严重过载,因此风机、泵类一般不超过额定频率运行。


声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我

们联系,我们将及时更正、删除,谢谢。

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
交流电动机 交流电机 电机
  • 交—交变频器特点和适用范围

    交—交变频器特点和适用范围

    近年来 ,国际上变频调速传动装置以每年 15左右% 的增长速度发展 ,并有逐步取代大部分直流调速传动装置的趋势。由于以恒频、恒压电源进行工作的普通异步电机澳门永利网上娱乐于变频调速系统时 ,存在着很大的局限性 ,国外发展了根据使用场合和使用要求而设计的专用的变频交流电动机。

  • 敲黑板!新型变频调速控制系统对交流电动机设计的特殊要求

    敲黑板!新型变频调速控制系统对交流电动机设计的特殊要求

    但从其变频调速的控制系统实际运行情况来分析和研究,澳门永利网上娱乐变频调速装置对现代交流电机的设计仍有它的特殊性和要求,这也是设计者必须慎重地进行研究和考虑的问题。

  • 三相交流电动机轴向力是如何形成的?

    三相交流电动机轴向力是如何形成的?

    对于三相交流电动机,当定子绕组接通供电电源之后,即产生一个旋转磁场,从而在转子中因电磁感应产生感应电流,转子被磁化,产生电磁引力而旋转。

  • 永磁电机是未来的一种市场需求

    永磁电机是未来的一种市场需求

    承受着电力电子技术的快速发展,以及相关元器件价格的不断降低,越来越多地用变频电源和交流电动机组成交流调速系统,来替代直流电动机调速系统。

  • 电动机运行时为何会形成轴向力?

    电动机运行时为何会形成轴向力?

    三相交流同步电动机或异步电动机(以下简称三相交流电动机),当定子绕组接通供电电源之后,即产生一个旋转磁场,从而,对于异步电动机,转子中因电磁感应产生感应电流;而对于同步电动机转子中需施加励磁电流。

  • 电动机变频调速运行可以实现高效和节能?

    电动机变频调速运行可以实现高效和节能?

    电动机的变频调速运行逐步成为一个时代符号,同步电动机运行调速是交流电动机变频调速驱动风机、泵类等平方转矩负载机械在生产工艺过程中的变频调速控制。变频调速控制可获得最佳工艺效果和相当大的节能、降耗效果。

  • 交流电机结构设计应把控的关键要素

    交流电机结构设计应把控的关键要素

    在初步确定总体结构后,通常从定子开始进行设计。对于定子铁心,一般应确定其轴向和周向的固紧方式,径向通风道元件的结构(无径向通风道者不进行此项);采用扇形片时,还须确定扇形片如何划分、燕尾槽的数目、尺寸和布置等内容。

  • 敲黑板!新型变频调速控制系统对交流电动机设计的特殊要求

    敲黑板!新型变频调速控制系统对交流电动机设计的特殊要求

    但从其变频调速的控制系统实际运行情况来分析和研究,澳门永利网上娱乐变频调速装置对现代交流电机的设计仍有它的特殊性和要求,这也是设计者必须慎重地进行研究和考虑的问题。

  • 谈高低压电机绕组匝间绝缘材料

    谈高低压电机绕组匝间绝缘材料

    从工艺的角度分类,可分为单圈和多圈绕组。单圈绕组如大型交流电机定子绕组、直流电机电枢绕组、插入式转子绕组、补偿绕组、阻尼绕组及均压线等,多圈绕组如中小型交流电机散嵌绕组和成型定子绕组及磁极绕组等。

  • 交流电机控制——同步电机控制系统

    交流电机控制——同步电机控制系统

    不论是同步电机还是异步电机,采用怎量控制技术及新的控制方法后,系统性能均大大提高,可望取代直流电机在电气控制领域中的主导地位。

  • 交流调速技术推动了交流电机调速的大发展

    交流调速技术推动了交流电机调速的大发展

    随着生产技术的不断发展,直流拖动的薄弱环节逐步显示出来。由于换向器的存在,使直流电动机的维护工作量加大,单机容量、最高转速以及使用环境都受到限制。

  • 变频调速已经成为交流电机调速的最新潮流

    变频调速已经成为交流电机调速的最新潮流

    目前在我国各行各业的各类机械与电气设备中与风机配套的电机约占全国电机装机量的60%,耗用电能约占全国发电总量的三分之一。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“大比特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得大比特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
Copyright Big-Bit © 1999-2013 All Right Reserved 大比特资讯公司 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任  

澳门永利网上娱乐