高压电机绕组为何会局部放电?_大比特电机网_中国微电机行业门户网站 - 澳门永利网上娱乐
大比特商务网 |资讯中心 |技术论坛 |解决方案 登录 注册 |电子刊 |招聘/求职

高压电机绕组为何会局部放电?

2019-10-21 16:14:21     来源:电机技术日参        

【大比特导读】在使用云母绝缘的旋转电机中,不可避免地会有许多缺陷,例如出现在绝缘材料的孔隙和绕组绝缘分层处的老化部分。因此,不同强度的局部放电源需叠加测量。放电时传递的放电量与不均匀特性和材料特定的介电性能有密切关系。

定子绕组绝缘处置是高压电机的制造难点,包括电磁线、绕组外包绝缘、高低电阻带,以及绕组的端部绑扎、浸漆和烘干等具体环节,局部放电是威胁电机可靠性的重大因素;因而,电机的绝缘结构、过程控制都必须有针对性的防范措施。

电机

高压电机的绝缘结构中通常会出现局部放电,但局部放电的大小、数量和位置取决于电机的设计、材料、制造工艺、质量、运行环境和老化状况。对于特定的电机设计,所用绝缘材料的特性、制造方法、运行条件等能极大地影响局部放电的数量、位置、特征、发展趋势和意义。

对于给定的电机,在大多数情况下,通过局部放电特征,可以鉴别和区分不同的局部放电源,也可以通过附加诊断测试和可视化检验来验证。找准放电源,可以较好地采取规避措施,并形成系统性的绝缘规范,以确保电机质量可靠。

01局部放电的基本原理

通常,局部放电发生在绝缘材料介质性能不均匀的位置,在这些位置,局部电场强度会增强,由于局部电场强度过大,将导致局部击穿。该局部击穿不会导致整个绝缘结构的击穿。通常局部放电需要一定的气体空间来发展,例如填充在绝缘体内部、临近导体或者绝缘体分界面的气体孔隙。当一个不均匀的局部场强超过其击穿场强时,会出现局部放电,在施加电压的一个周期内会导致数个局部放电脉冲产生。

在使用云母绝缘的旋转电机中,不可避免地会有许多缺陷,例如出现在绝缘材料的孔隙和绕组绝缘分层处的老化部分。因此,不同强度的局部放电源需叠加测量。放电时传递的放电量与不均匀特性和材料特定的介电性能有密切关系。

在电机中出现明显局部放电通常是绝缘缺陷的征兆,例如制造质量问题或者运行中的劣化,而这并非其失效的直接原因。此外,还取决于特定条件下的局部放电源及其幅值,它可能转化成为局部绝缘老化的重要因素。失效时间与局部放电水平无关,但与其他因素,例如运行温度、槽楔情况、污染程度等密切相关。

特定局部放电测量和分析可用于新绕组和绕组部件的质量控制以及绝缘缺陷的早期检测,绝缘缺陷由运行中的热、电、环境和机械应力等因素引起,可导致绝缘故障。

本文由大比特商务网收集整理(www.tok-voi.com)

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

  • 赞一个(
    0
    )
  • 踩一下(
    0
    )
分享到:
阅读延展
电机
  • 电机成形绕组与散嵌绕组的对比分析

    电机成形绕组与散嵌绕组的对比分析

    直流电机、大规格低压电机和高压电机电枢线圈大多都采用成型线圈,成型线圈一般为绝缘扁铜线制成的,较容易保持一定形状。成型绕组就是由成型线圈组成,在嵌线前先将线圈加工成相对固定的形状,嵌入铁芯槽后原则上不再进行整形。

  • 电机相间故障特征简述及定子绕组型式

    电机相间故障特征简述及定子绕组型式

    同心式绕组是同一线圈组的几个大小不同矩形线圈,按同一中心的位置逐个嵌装排列成回字形的型式。同心式绕组又分单层与多层。一般单相电动机和部分小功率三相异步电动机的定子绕组采用这种型式。

  • 驱动电机:10月装机8.6万台,同比下降45%

    驱动电机:10月装机8.6万台,同比下降45%

    根据工信部整车出厂合格证数据核算,2019年10月,我国新能源汽车配套驱动电机装机量为86132台,环比小幅上涨8%,同比降幅继续扩大至45%。

  • 电机转子车削加工细节控制要求

    电机转子车削加工细节控制要求

    还有一个问题是车削过程中转子表面与轴的同心度也必须处理好,最为直接的就是转子车削过程的基准选择和保护,以及基准与设备的对接符合性。

  • 电机轴的设计要素和技术要求

    电机轴的设计要素和技术要求

    电机中转轴的强度和刚度的保证,电机运行时,转轴所受的机械力和力矩的形式随电机种类和传动机构的不同而异。作用力主要包括转子组件自身的重力,转子偏心引起的单向磁拉力和不平衡重量导致的离心力。

  • 先进的微型电机技术让医疗诊断设备越来越智能化!

    先进的微型电机技术让医疗诊断设备越来越智能化!

    医疗诊断是日常生活的一部分,无论是去看医生做常规的身体和血液检查,还是去急诊室。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“大比特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得大比特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
Copyright Big-Bit © 1999-2013 All Right Reserved 大比特资讯公司 版权所有      未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任  

澳门永利网上娱乐